DETERMINATION OF CHARACTERISTIC DYNAMIC AND THERMAL INTERACTION
TIMES IN PROBLEMS OF GAS SUSPENSION WAVE DYNAMICS

A. I. Ivandaev ' UDC 532.529:533.6.071.1

In the solution of wave dynamics problems of gas suspensionsit is useful to employ the
concepts of the characteristic time 7 and length 7 of interphase exchange of momentum (T,
Zv) and heat (TT, ZT), these being the characteristic times and lengths at which the differ-
ences in velocities and temperatures of the gas and particles change by a specific number of
times. Comparison of these values to the characteristic time and linear scale of the problem
permits conclusions as to the possibility of flow description within the framework of simple
special models (the gas suspension thermodynamic equilibrium model, single-temperature gas
suspension model, etc.). If the flow must be studied within the framework of the generalized
two-temperature, two-velocity model, then the characteristic interphase interaction times
and lengths permit introduction of convenient dimensionless variables. It will be shown below
that the characteristic times for dynamic 7. and thermal T.. phase interaction are determined
by the characteristic Reynolds numbers for %low over particles. .  They may differ greatly from

each other, and from the conventional Stokes times [1l, 2] corresponding to small Reynolds num-—
bers.

Let an isolated spherical particle of diameter d and density pg having an initial veloc-
ity vg, and temperature Tg, be located within a gas flow behind the front of a shock wave mov-
ingwith velocity D, the gas flow velocity relative to a fixed coordinate system being vgg,
with temperature Tgf and density Pgf (the situation shown schematically in Fig. 1). 1In such
a constant flow the laws specifying the changes in particle velocity and temperature are de-—
scribed by differential equations

mdv,/dt = f, me,dTs/dt = q (m = (1/6)nd3p,), ]
f = 0.4250d%gCalvgs — vil(ves — 1), ¢ = nddeNu(Tgy — T,), 2

where C, is the resistance coefficient, Nu is the heat exchange parameter, p, A, ¢, the den-

sity, thermal conductivity, and specific heat, the subscripts g and f denote gas and particle
parameters. )

The resistance coefficient Cj and heat exchange parameter Nu, whecih determine the inten-—
sity of thermal and mechanical interaction of the particle with the gas behind the shock wave
front, depend on the characteristic Reynolds and Mach numbers of the relative motion [3]. How-
ever, particle flowover regimes with large Mach numbers are realized only in very intense
shock waves, while in other cases the Mach effect is small and may be neglected. We take

Cq = 24/Re + 4/Re"® + 0,44, Nu — 2 L 0.6Re%PI0S, Ro — [vg — Usldpalie, Pr =pgeplly, (D

where cp, and u_ are the specific heat at constant pressure and the dynamic viscosity; Pr is
the Prandtl num%er of the gas.

At low Re (Re < ~1) a Stokes flowover regime is realized, in which in place of Eq. (2)
we have Cq = 24/Re, Nu = 2, 1In this case in accordance with Eq. (1) the change in velocity
v, and temperature TS of the particle with time are defined by exponential functions
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where TS, TS are the characteristic times over which the difference between gas and particle
velocities and temperatures change by a factor of e = 2.7 times din the Stokes regime of rel-
ative motion. These parameters have meaning over the entire zone of parameter equalizatio
and therefore can be called relaxation times (t_ is the Stokes velocity relaxation time, T7
is the Stokes temperature relaxation time). We note that

S c
ek, k=15Pr~t. (4)
L5 : Cpg

The constant k is of the order of magnitude of unity, since c

T Cpgs while the gas Prandtl
number Pr ~ 1.

s

If the Reynolds numbers of the relative flow over the particles are sufficiently great
(Re > 10%) we have Newtonian flow over the particles, wherein with consideration that Pr ~ 1
in accordance with Eq. (2) we may take

€4 2 0.44, Nu == 0.6Re'/2, )

Integratiqn of equation of motion (1) with resistance law (5) gives a time dependence for
particle velocity

_ ' ._‘1 ) . :
ﬂ=-"s—"gi=[1+(e—1);fv] , el d (6)

Avy gy gy » Pgr 1 Vg — vao |’

where 15 is the characteristic time over which the difference between gas and particlé veloc-
ities in the initial section of particle motion behind the shock wave changes by a factor of
‘e times with Newtonian overflow.

In contrast to Eq. (3), Eq. {(6). is not exponential, and N is not a true relaxation time
having meaniné over the entire zone of velocity equalization. We note that in contrast to the
Stokes time T, the Newtonian time Ty is proportional not to the square, but to the first power
of the particle diameter d. Moreover, it depends on the characteristic phase density ratio
ps/pgf and the characteristic velocity difference lng —-VSOI. Then

N
T, 94 [ Pgs — Vo | 3Py
‘I:g .Re*’ * ug > ?

where Re, is the characteristic Reynolds number of the relative motion, defined by the gas and
particle parameters behind the shock wave front. Thus the characteristic Newtonian time 7, is
always less than the Stokes time Ty

Tn the case of Newtonian flow over the particles we obtain the particle temperature de-
pendence on time by integration of the heat increment equation (1) with heat exchange law (5)
with consideration of changes in particle velocity with time (number Re) in accordance with
Eq. (6). We have

A Ty—Tgy ' { _— Ti?’[ ( £ )1/2]} (8)
AT _ 5™ "4f ~oxpl0.35) Reg—2 |4 — [ 1 + 1.72— .
M, T Ty 7 3 —

Equation (8) permits derivation of an expression for the characteristic temperature equaliza-
tion time for Newtonian flow over the moving particle (the time over which the difference be-
tween gas and particle temperatures changes by a factor of e = 2.7 times):

I_Ii; e 3.4-10% V Re, +5.2.10%*Re, (k =15 z:igPr ~ 1, Rey> 102). &

»

It is evident that in contrast to the Stokes case, where in accordance with Eq. (&) T%/
TS ~ 1, the values of the ratios T and Tg depend on the. characteristic Reynolds number Re,
for Newtonian flow over the partic{es, and at Re, of the order of 10° and above may signifi-
cantly exceed unity. We note that T%, just like Tg, characterizes only the Newtonian zone
of temperature equalization and (in congrast to TS) is not the true temperature relaxation
time. In contrast te the Stokes time tq depends on the characteristic Reynolds number of the
relative motion Re,. We then have
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consequently, the chapacteristic Newtonian time Ty is signifigantly smaller than the corre~
sponding Stokes time Tp. However, the value of the ratio T%/TT cannot be less than 0.05 no
matter how high Re,, i.e., the characteristic Newtonian temperature change time 7., cannot be
arbitrarily small (in contrast tc the Newtonian velocity change time, which tends to zero upon
increase in Re, {see Eq. (7)].

We note that if an expression for T¥ is obtained without counsideration of the effect of
particles being set in motion under the action of the gas flow, setting the heat exchange pa-
rameter Nu in Eq. (5) equal to 0.6Re*1/2 = const, then at values Rex >> 10° large errors may
be produced in determining T%\?. In fact, with such an approach to determining tp (we will de-
note the corresponding value of fcl,f, by the subscript * below) we have

1),/15 = 3.3/ V Re,.

In contras to Y, the quantity 1% > 0 as Re, > . Therefore, for example, at Re, = 10°

we have TT 6TT,,, and with increase in Rex the difference between Tr and Tox also increases.

With consideration of Egs. (4), (7), and (9), which relate the quantities TN, N to each
other, the law of particle temperature change with time, Eq. (8), can be rewritten in the form

AT Ts—'_Tgf 2
LSl O S S _ 10
AT, Ty =Ty exP{o 03I»VRe* l/1+ (1+0, 03’61/39*) 1] ]} a0
It can easily be shown that for Re, > 10° (when 0.03kvRe, >> 1) for times t/T > 1, the parame-

ter Re, has practically no effect on the form of Eq. (10), and
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AT/AT, = exp{—V/ y/<}}.

The form of the dimensionless time dependences of relative particle velocity and tempera-
ture behind the wave front for Stokes and Newtonian overflow regimes is illustrated in Fig. 2,
where the solid line is the Stokes exponential dependence, Eq. (3), the dashed line is Newton-
ian velocity dependence (6), and the dotted line is particle temperature vs time, Eq. (10),
at Re, = 10°. Each curve is constructed using its own dimensionless time value. It is evident
that Egqs. (6), (10) do not differ greatly from expcnential, although they are steeper for t/
t < 1 and flatter for t/t > 1. At t/T > 1, Eqs. (6), (10) (dashed and dotted lines) practi-
cally coincide {(as was noted above, at Re, > 10° the form of Eq. (10) does not depend on this
parameter). Figure 3 illustrates the dependence of characteristic Newtonian particle velocity
and temperature change times on characteristic Reynolds number of the relative flowover Re,

and clearly shows the difference between these times over a wide Re, range.

Figure 4 shows the dependence of characteristic Newtonian particle velocity change time
(relative to the Stokes velocity relaxation time, solid lines) and the characteristic tempera-
ture change time (relative to the Stokes temperature relaxation time, dashed lines) on Mach
number for the case of a shock wave in air. The various curves correspond to different particle
diameters (numbers along the curves are diameters in 1). Each curve illustrates the correspond-
ing functions in the region of Mach numbers sufficiently large for a given dlameter at which
there is no doubt that a Newtonian regime is realized behind the front (Regx > 10%). With in-
crease in wave intensity the ratio between Newtonian and Stokes times decreases, with the char-
acteristic velocity change time tending to zero, and the temperature change time to approxi-
mately 0.05. TFor waves of fixed intensity the ratio of Newtonian to Stokes times increases
with decrease in particle diameter, while

T /15 ~Ad™, 17 /%§ ~ 0.05 + Bd /% (4, B = const).
The results of the analysis performed may prove useful in determining characteristic mo-
mentum and heat exchange times between phases in problems of dynamics of gas suspensions.
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